
DESIGNESANALYSIS
of

ALGORITHMS

unit-5

feedbackkorrections : vibha@pesu.pes.edu VIBHAMASTI



DYNAMIC PROGRAMMING
• Richard Bellman in 1950s

• Recurrence relation between larger and smaller solutions
,

solve smaller instances

• Record solutions in a table

• Prevents duplication of effort (subproblem) using a table
and bottom - up approach

1. FIBONACCI NUMBERS

fcn) = fcn - 1) tfcn -2)
f( 03=0

f-(1) =L

Recursion tree

fln)

✓ computed
fcn -1) fcn-2,

multiple
times;
inefficient

fln-2) fcn-3) fcn -3) fln-4)
t
multiple invocations
(overlapping subproblems)



eg : flo)=O
fu) = I

fC2) = Ot I = I

f- (3) = It 1=2
f-(4) = 2-11

:
(

constant amount of work at every step

complexity

• time : Ocn)

°

space : Ocn) if all kept
space : OCD if only prev 2 entries

2. BINOMIAL COEFFICIENT

(atb)
n
= Ccn

,
o) an bot . . . + Ccn ,k> an

-

kbkt
. .

. t Ccn ,n7a°b°

° Given n Eek , compute nck

Recurrence

(Chik) -- Ccn-I ,k) t ( (n-I > k
- l) for n > k 70

Ccn
,
07=1 for n 20

(Cn
,
n) = I



Table

O l 2 3 . . - k- l K

O l

l l l ) pascal 's triangle2 1142 1
3 I 3 3 I

'
,

i :

n - l l n - I -
- - Ccn- I > k-D Ccn - I

,
k)

n l n
- - -

Ccn ,k)

( (n
,
07=1

( Cmn) -- I
Ccn

,
D= Ccn- I

,
k) t Ccn-Ish-I)

CC 2
,
D= CC 1,1) t CCI,O)

Algorithm Ccn ,k)

K input : integers nzo , Uzo
Houtput : Ccn , k)

for i -- o to n

for j=o to min ( i ,k)

if j
-

- o or j -- i
c. [i ,j3 =/

else

Cci ,jI= Cli - I ,j3t Cci - I ,j - II

return can ,hT



https://trykv.medium.com/how-to-solve-minimum-coin-change-f96a758ccade

complexity

• Time : Ocnk)

• Space : Olnk)

Q : what does DP have in common with divide and conquer?
What is the principal difference between them?

• recursive trees
• algorithm same

, only computations reduced due to

storing of values

Q : The coin change problem does not have an optimal

greedy solution in all cases

eg : coins 1
, 20,25 and amount 40

Is there a DP based algorithm that can solve all cases of

the coin change problem?

Brute force :

40 maintain DP array ?
✓ 12h25

39 15

11 20

38 20 / 45 \
"

14

19 14
19/1/20

0



3. KNAPSACK PROBLEM

a bag with capacity M , objects with weights and values

° 0/1 knapsack ; object either picked up or not Cno fractions)

° Optimisation : maximise profit due to objects ; find most valuable
subset of items

°

eg : a thief tries to maximise profit with finite bag size

(weight and value)

° exhaustive search call subsets found
,
value and weight

calculated
, optimised subset found)

• 2n subsets

DP Algorithm
° Derive recurrence relation that expresses a solution to

an instance of the knapsack problem in terms of solutions

to its smaller subinstances

no of items
> ← capacity

° Consider knapsack Cn ,W) and a subproblem knapsack ( i , j)
where i en and j EW

Recurrence exdgude
ith item finitude

ith item

Max CF Ci - I ,j) , Vit f Ci - I ,j -Wi) if j -wi 20

Flis 's) = { fei - I
, j , if j - wi co



eg: Item i Weight Wi Value vi

1 2 12

2 1 10

3 3 20

4 2 15

knapsack( 4,5) where capacity --5

solution

capacity j
w v i I 2 3 4 5

2 12 I 0 12 12 12 12

1 10 2 ④ 12 22 ② 22

3 ⑧ 3 10 12 22 130J 32
2 15 4 10 15 25 30 37

Complexity

• space : Olnw)
• Time complexity : Olnw)

• Items in optimal solution: Oln)

Algorithm knapsack (n ,W)
11inputs : n - no of items , w - capacity
11 Output : optimal subset

✗ Global table f- Intl][WH ] initialised to - I

11 f-[0,0 ] initialised to 0

✗ Wt[nT and Vallin] global variables



for i = 0 to n

for j=o to W

if i = :O or j==0
f- [ i ,j]

= 0

else if j-wt.ci ] > = 0 :

f- [ i,j] = Max { Fci -1 , j] , Valli] -1 Fli -1 , j - Wt[i ]]

else

F- [i ,j]
= f- [i - I ,j]

return F[n,W]

Q : Is a sequence of values in a row of the DP table for the

knapsack problem is always nondecreasing ?

Yes
,
as the capacity increases the value cannot decrease

Q : IS a sequence of values in a column of the DP table for

the knapsack problem is always nondecreasing ?

Yes
,
as the number of items increases the value

cannot decrease ; the previous value can be used



MEMORY FUNCTION KNAPSACK

° Bottom up advantage : each value computed only once

° Not all table entries are useful ; wasted computations

• Top down disadvantage : multiple computations

• Solution : combine advantages of top down and bottom up

approach

Algorithm MF knapsack Li , j)
H Inputs : i - no of items , j - capacity
D output : optimal subset

11 Global table FCNJCW] initialised to - I

11 FCO
,
O ] initialised to 0

11 WENT and Vln] global variables

if Fci
, j] C O D not stored in table

if j C Wti ] A item weight exceeds capacity
value = MF knapsackCi- I , j)

else

value -
-
Max (Mf knapsackCi- I , j) ,Uli] -1mFknapsack Ci- I ,j- WCIT)

Fci
, j]

= Value

return Fci
, j]



eg: Item i weight wi Value Vi

1 2 12

2 1 10

3 3 20

4 2 15

knapsack( 4,5) where capacity -- 5

capacity j
i 0 I 2 3 4 5

O O

L
3

4 ↳
G

l . f- [4,53 = - I

j -- 5 j -wi = 5-2=3

MAXC f- [3,5 ]
,
15T FC3,3])

:

I

capacity j
i O l 2 3 4 5

O O

L
- - 9 values not

3 -
- -

computed and
4 - -

-

-

filled



Complexity

- space : Ocn w)
° Time complexity : Ocnw)

° Items in optimal solution: Oln)

4. WARSHALL'S ALGORITHM

. Transitive closure of a relation

° Relations can be represented as unweighted directed graphs
(edge from A to B represents that A is related to B)

. Transitivity : aRb and BRC ⇒ a Rc

°

Apply transitivity as many times as possible : obtain
transitive closure

° Existence of all nontrivial paths in a digraph ; all paths to
be represented by direct edge in transitive closure

eg : Transitive closure

I s 3
I 2 3 4

n
l O O l O

2 I O O l

3 O O O O

2
'

4
4 O l O o

r



° From source l :

path from 1 to 1 NO

path from 1 to 2 NO

path from 1 to 3 YES I -33

path from 1 to 4 No

° From source 2 :

path from 2 to 1 YES 2-71

path from 2 to 2 YES 2-34-72

path from 2 to 3 YES 2-71-73

path from 2 to 4 YES 2-74

° And so on

° Transitive closure :

I s 3
1 23 4

n
r 7

a
l O O l O

2 l l l l

3 O O O O

> 4 l l l l2 4
r

0 0
Recurrence

° R
" '
= A (adjacency matrix)

° R
'M
-

-T (transitive closure)



° On the Kth iteration
,
the algorithm computes R

""

I if path from i to K and ktoj
Nk) (i

, j]
=

or R
"'-" ( i

,
KT -- R"

-"
[ k ,j7 -- I{ R"-" [ i ,j] otherwise

° Logical expression

R
""
Ci
, JT

= R
"-"

Ci
, j] or R

'" -"
Ci
,
KT and R

"-"
Ck ,j]

Algorithm Warshaw ( Acn , n ])

K Input : Adjacency matrix Anxn
K output : transitive closure Tnxn

RCO) = A

for K -- I to n

for i= I to h

for j =/ to n

R'" Ci ,j]
-

- R
"-"

Ci
, j] or R

'" -"
Ci
,
KT and R

"-"
Ck ,j]

return Rm'



Example :

O) RCO)

I s 3
1 23 4

I 0 O l O
^

2 I O O l

3 O O O O

> 4 O l O O
2 4
r

D R
")

I s 3
1 23 4

n 7 1 00 I o → outgoing
2 I O l l

3 O O O O

2
'

4
4 O l O o

r p
incoming

2) Ru)

I > 3
1 23 4

n r 7
n

l O O l O

2 I o l l
→ outgoing

3 O O O O

2
'

4
4 l l l l

r p
① incoming



2) RB
)

I s 3
I 2 3 4

n r 7
n

l O O l O

2 I O l l

3 O O o o → outgoing
2

'

4
4 l l l l

r p

① incoming

2) Rot)

I > 3 I 2 3 4

n r 7
n

l O O l O

2 l l l l

3 O O O O

2
'

4
4 l l l l → outgoing

r p

① ① incoming

complexity
° Time : 01h31

° Space : OCN) only 2 matrices required



Q : Is warshall's algorithm efficient for sparse graphs?

° If adj list used ?

Oi. Can Marshall 's algorithm be used to determine if

a graph is a DAG (directed acyclic graph) ?

- yes ; path from node to itself - cyclic

5. FLOYD'S ALGORITHM

. shortest path between every pair of vertices

. Dijkstra's : path from vertex to n - I remaining vertices
Ocn) paths

• current problem : OCN) path

°

Compute all pairs of shortest paths via sequence of

nxn matrices D
"'

,
. . . ,

D
""

,
. . .

D
'"
where D

"" Ci
, j] is

the shortest path from itoj with only first K vertices
allowed as intermediate vertices

2

eg : I e 2
I 2 3 4

ro T
D
"' -

- If} ! :p ! )3

u
3

4
3

,

s 4



2 1 23 4
I c 2

Ivial ro
?
>

Dc"
-
- 2 § ?)3

v 5 3
< 9 4 90

3 l 4
7

I

2 1 23 4
I c 2

7 1 A 3via 2
rrb >

Dm -
- 21%9,54%13 9

5 39
✓

c g 4
3 l 4

7

I

2
L l 23 4

1 10
7 2

via3 r 67 >
I 1034

r n (3) =

3 9 16 6 D } 95g !✓ e5 4
,

u

4 16
3 l 9

,
4

I

2
L l 23 4

1 10
7 2

via 4 r 67 >
I 1034

r n (3) =

si 166 D 31%9 ! ! ' finnaatrix
v e5 4

,
u

4 16
3 l 9

,
4

I



Algorithm Floyd ( Acn][n])

✗ Input : weight matrix A of a graph
✗ Output : Distance matrix of shortest paths

D= A

for k= 1 to n

for i= 1 to n

for j=l to n

D[i,jT= min ( Dci,j] , D[ i ,k] + DCK,j])

return D

Complexity
° Time : 01h3)
• Space : 0cm)

A. Enhance Floyd's algorithm so that shortest paths
themselves and not just their lengths are found

Have a second matrix PREV that stores the

previous vertice visited in the path from itoj
in PREVCI,j]



6. OPTIMAL BINARY SEARCH TREES

• Given n keys a. c. - - can and probabilities p , , . . . ,Pn

searching for them ,

find a BST with a minimum number

of comparisons in successful search

• since total number of BSTS with n nodes is given by
C.(2h ,n )

,
brute force is pointless (exponential)

n -11

y
Catalan
number

9k

optimal optimal
BST for BST for

Ai , . . - , Ak- 1 Ak-11 ) - - , , Aj

• c[ i,j]
. minimum average number of comparisons made

in 1- [i ,j] > tree with nodes ai to aj Tii

• Tci,j] optimal BST for keys aic . - . < aj where
Is i Ej En

root

K -1 Inode
Cci,j ] = min Cpk

- 1 + Eps . ( level of as in Tik
"
+ 1)

ieksj p s=i root

1 access j
+ EPs - C level of as in Tmi

,
+ if )^°de

5=141



K-1

([i ,j]= min { E
isksj s=i

Ps - (level of as in Tik
-

1) +

psillevelofas in Tk! , ) + ÉP, }
5--1<+1

s=i

Recurrence
j

Cci ,j]= min { C [ i ,k-1] -1C [ktl , j ]} +
8
s=i Ps Isi c-jen

ickej
✓
one node tree

Cci
,
i ] =p ; I C- ien

Cci
,
i -11=0

Table for DP

0000

8
0

0



I 2 3 4

Eg : Key A B C D n=4

probability 0.1 0.2 0.4 0.3

initial tables To
"

j j

O l 2 3 4 0 I 2 3 4
I 0 0.1 I 1

i 2 0 0.2 i 2 2

3 0 0.4 3 3

4 0 0-3 4 4
5 0 5

main table root table

2

Compute ( [ 1,2 ]= min {
"=/ : [[1-0]+42,2] + Eps

%
a-2 :([ 1) 1) 1- ( [3,2] -18ps

c-=/ 5=2

j=2
= min {

k=1 : 0+0.2-10.3 = 0.5

a-2 : 0.1-10+0.3--0.4

j j

O l 2 3 4

,

☐ o,

' ' "
I 0 0.1 0.4 I V2

i 2 0 0.2 i 2 2

3 0 0.4 3 3

4 4 4
5 0 5

main table root table



And so on
, avg no of

comparisons
j j

O l 2 3 4 / 0 I 2 3 4

I 0 0.1 0.4 I - I % 1 I 2 3 ③
i 2 0 0.2 0.8 1-4 i 2 2 3 3

3 0 0.4 1.0 3 3 3

4 0 0.3 4 4
5 0 5

Reconstruction

1-11,2) yT( 1,4)
C

- t e

A)B D B D

/

A

root obtained from root table
, recursively



Algorithm

} initial ise comparisons
and root tables

y
loop to find

mineral

T T

avg
root table

comps.

Complexity
• Time : 01h3) can reduce to 01h2)
° Space : 01h2)



Limitations of Algorithmic Power

• There are no algorithms to solve some problems leg : halting
problem, acceptance problem)

• certain problems can be solved in principle , but in non -

polynomial time ceg: travelling salesman problem)

LOWER- BOUND ARGUMENTS

• Lower bound : an estimate on a minimum amount of work

needed to solve a given problem

° Can be an exact count or an efficiency class Ch)

°

Tight lower bound : there exists an algorithm with the

same efficiency as the lower bound

• Should not be possible to solve at lower complexity than

lower bound should be firm

Problem Lower Bound Tightness Calgo exists)

sorting srcnwgn) yes merge
search sorted array rclogn) yes binary
element uniqueness

bits
rcnwgn) yes sorta adjcn)t

integer multiplication cnxn) Icn) unknown

matrix multiplication lnxn) rcn2) unknown

I
Strassen 's n2 . something



1. Trivial Lower Bounds

•

counting no . of items to be processed in input and

generated as output

Examples

(a) Max element > rcn)

(b) Polynomial evaluation > rcn) for n terms

(c) Matrix multiplication > RCM) for each element in nxn

(d) Sorting > not best

° Note : may not always be useful

2. Adversary Arguments
° Worst case amount of work
•

Imagine adversary working hard to make problem
difficult to solve by adjusting input

Examples

(a)Search for element in binary search ; adversary puts
number in the larger of two subsets (worst case

log n comparisons)

(b) Merging of two sorted list; adversary ai < bj Iff

icj for a , , 92 , . . . an and bi , bz , . . . > bn (worst

case an -1 comparisons)



3. Problem Reduction

☐ If problem P at least as hard as problem Q then

lower bound for Q is lower bound for P

• Find problem Q with known lower bound , reduce

problem Q to problem P

Example

(a) P : MST for n points in Cartesian plane , Q : element

uniqueness problem crcnlogn))

Reduce element uniqueness problem to minimum

spanning tree problem (Euclidean MST problem)

let n numbers be the n points in Cartesian plane
for which MST must be found

convert n no .s to set of coordinates with y=o
{ X , , Xz , . . .

>xn } → { (x , , 0) , (Xz > 07 , . . . > Gin > 0) }

Let T be MST of n points

1
I 2 6

6 8
(2,0)

2 4 >
< •

,

•
8
•

3 CF ,o)
>

(1,0)
(3,0)

3
3

4
2 4

MST



https://math.stackexchange.com/questions/2650/how-to-prove-the-optimal-towers-of-hanoi-strategy

http://towersofhanoi.info/Tech.aspx

V

I
1

2

2 >
< •

"
¥
"
•

3 go,
>

(1,0)
"

(3,0)
3

z
4

2

If 0 length edge exists
,
no uniqueness .

Here :

unique



DECISION TREES

• Problem types : optimisation and desicion C true/ false)

°

Many problems can be framed in either way

• Desicion problems more convenient to study complexity

• At each node
, algorithm takes decision

Eg : Decision tree for minimum of 3 no .s

yes no
acb

acc b< c

a C
b C

• cannot have less no . of leaf nodes than no . of
solutions



Central Idea

• Tree must be tall enough for no .
of leaves = no . of

outcomes

• Largest no . of leaves : all leaves in last level = 2h

l s 2h

° Height must be at least logzCleaves)

h I 1- logall

1- Desicion Trees for Sorting Algorithms
•

Sorting algorithms comparison - based (compare pairs of

elements in list)

•

Binary decision tree for comparison - based sorting to derive

lower bounds on time efficiency

• Decision tree for sorting array of size n will have n !

leaf nodes

(worst Cn) ? Hogan ! 7

Stirling 's formula
n ! ñ 2mn⑦

^

logzff 2mn ) (Ie)) = ftz 109212mn) + nlogz (E)I



= (1-2109212)-1 tzlogzltl) + 1- logan + n logan - hlogze)
2

= I ltlogzt + logan - dog ,e) n t n logan 7
2 2

= 0 (n log n )

Decision tree for 3-element selection sort

Average- Case Behaviour

•

Average depth of leaves ; average path length from root

to leaves



Decision tree for 3-element Insertion sort

average case :

2-13 -13-12-13+3 = 22/3 comparisons
6

Lower Bound on Cavg

Cavg (n) 2 login !)

2- Desicion Trees for searching Algorithms
•

key comparisons of array of n keys

Cbs
worst
(n) = Hogan ] -11 = rlogzcn -1177



Four element tree

Cworstln) 2 Flog ,(2n -1177

• Lower than rlogzcn -1177 ; tight ?

Binary Decision Tree

Cbs
worst
(n) = rlogzln -1177





https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

COMPLEXITY CLASSES

° Is a problem tractable ; solvable
in polynomial time Olpcn))

• Decision problems , not optimisation (for now)

class P

° Decision problems solvable in polynomial time Ocpcn))

• Problems :
-

searching
- element uniqueness
- graph connectivity
-

graph acyclicity
-

primality testing
- IITK

• Oclogn) C- 0 Cn) and Ocnlogn) C- 01h27 polynomial
time in big-0 notation

class NP

• Nondeterministic Polynomial Nondeterministic Turing machine

can solve in polynomial time

• Solutions can be verified in polynomial time once obtained

• Abstract two-step procedure
- generates random string to verify
- check if solution correct in polynomial time



BOOLEAN/CNF SATISFIABILITY

° Is a boolean function in conjunctive normal form CCNF)

satisfiable (values that make the expression evaluate to D

• CNF : AND of ORs
,
i.e.
,
POS form

Eg : Ca +b- +E) ( a- + b) ( a- + b- + E) =y

if a=L
,
b =L

,
C- 0

,
check if y = 1

Checking phase : Oln)

Examples

• Hamiltonian circuit existence : visit every node and come

back to starting vertex

• Partition problem : possible to partition set of n integers
into two disjoint subsets with same sum

• Decision variants of MST
,
KP
, graph colouring and other

combinatorial optimisation problems

° All class P problems can be solved by NP algorithm

P C- NP

• Is P= NP - fundamental question in CS



class NP - complete

• A decision problem D is NP-complete if it is as hard as

any problem in NP and every problem in NP is reducible

to D in polynomial time
NP Problems

•

•

if NP-complete
Problems

•

•

• All NP problems can be reduced to D in polynomial time

• Boolean satisfiability , Hamiltonian circuit, graph colouring ,
travelling salesman , subset sum are interconvertible /reducible

•

currently do not have polynomial time algorithm for even one

of them

• Prove that no polynomial time solution exists for any one ,

prove for all ; prove P # NP

NP Problems

known Np
•

complete candidate
> for NP•

;; complete
•

•



class NP - hard

• D may or may not be in NP

• Every problem in NP polynomial time reducible to D

^

NP-Hard NP-Hard

NP-Complete

P= NP
NP

s = NP-Complete
i.

-
-
-
-

-

,

'

ÉÉp
'

: !
E

P =/ Np p=Np

Complexity Hierarchy

EXPSPACE known that at least one
±

EXPTIME
is a proper subset of

± another
PSP,ACE
=

Np
? = → unknown

±
p

±
NL



BACKTRACKING

• When polynomial solutions for combinatorial problems do not

exist

• Smart ways of exploring solution space Cbetter than exhaustive

solution)

• worst case still exponential ; eliminates unnecessary cases from

exhaustive search

• Further: branch and bound

steps

• construct state- space tree nodes : partial solutions and

edges : choices in extending partial solutions

• Explore using DFS

° Prune nonpromising nodes (DFS stops and backtracks)

N - Queens Problem

• Place N queens on an NXN chess board so that no two of

them are in the same row
,
column or diagonal

0 I 2 3

0 a queen 1

I
< queen 2

2 < queen 3

3 < queen 4



° Find column numbers for each queen

• No solution for 2×2
, 3×3

it
prune

• Stop if columns equal or diagonals equal

Q

Q

Q

Q



Hamiltonian circuit

- cycle in a graph that passes through all vertices of graph
exactly once

° Source node does not matter

a b

c f

d e



Subset Sum Problem

° Set A = { a , , a , , . . . , an} of n positive integers , find subset

whose sum is equal to given positive integer d

Eg: A = {3,5 , 6,7 } ,
D= 15

GENERAL BACKTRACKING ALGORITHM

Algorithm Backtrack (✗ [ I . . .it)

✗ Input : first i promising components of solution

✗ Output : all tuples in solution lxi.kz , . . . Xn?

if ✗ [ I
. . -
i] is solution

write ✗ [ I . . . i ]

else

for each element x E Sit , and constraints

✗ [i -11] = x

Backtrack (✗ [ I . . . i -117 )



Q

Q

Q

: : :
1

Q

✗ § 3

✗

Q

Q

I

✗ Q

Q

Q

Q

solution

Q mirror Q

Q
,
images

,

Q

Q Q

Q Q



BRANCH G BOUND

• Improvement upon backtracking

• Best value of objective function on any solution that can
be obtained by adding further components to the partially
constructed solution at node

termination

• Value of bound (upper/ lower) of node not better than
best solution seen so far

• No feasible solution as constraints already violated

• No further choices - Compare

Job Assignment Problem

• Cost minimised ; lower bound

• Lower bound : sum of each person's lowest cost jobs (usually
not a solution ; acts as lower bound)

0
O
O
o

lower bound = 2-131-1+4 = 10



State Space tree

° Best - first branch and bound

• Generate all children
, go to best child

0
no other no other

Job=/ no other pick this job=3
no other job =4

job --2



Knapsack Problem

Item i Weight Wi Value vi value

weight
1 4 40 10

2 7 42 6

3 5 25 5

4 3 12 4

knapsack( 4,107 Where capacity = to

• Desire : Max value Ee min weight ⇒ value

weight

-

Arrange in descending order

• Upper bound

←
space left

ub= Vt (W - w) vi.+1

f Wi-11 Ycurrent
value of 4W of
items next item

1- to i

Descending Order

Item i Weight Wi Value vi value

weight
1 4 40 10

2 7 42 6

3 5 25 5

4 3 12 4



Travelling Salesman Problem

• start in a city , complete Hamiltonian circuit on weighted
graph

• Lower bound : sum of costs of 2 lowest edges at a node
and then divide by 2

a

2 1

C

g
b

s = (21-1)+(1+3) + (2+3) = 12

lb = §



Graph

tree

• mirror image : same cost


